久久久久久久网-久久久久久久男人的天堂-久久久久久久免费视频-久久久久久久久综合影视网-尤物视频网站在线观看-尤物视频网站在线

Soft Agar Colony Formation Assay System – High Efficiency & Precision, Unlocking New Dimensions in Tumor Research!

The occurrence and development of tumors is a complex process involving a series of genetic and epigenetic changes. These changes enable cells to break free from the constraints of normal growth regulatory signals (such as external environmental and internal signals) and acquire the ability for autonomous proliferation. Among these changes, anchorage-independent growth is one of the important markers of malignant cell transformation, and the Soft Agar Colony Formation Assay is regarded as the gold standard for detecting malignant cell transformation.

 

The Soft Agar Colony Formation Assay cultures cells in a semi-solid medium and observes whether they can form colonies under anchorage-independent conditions, thereby determining the cells’ malignant transformation ability. However, this method usually takes 3–4 weeks to yield results, which seriously slows down research progress. Additionally, since it relies on manual microscopic counting of colonies, unified judgment is difficult to achieve, leading to result deviations. Most importantly, the traditional soft agar assay cannot recover viable cells, which limits the conduct of subsequent research.

 

Cellbiolabs’ new-generation CytoSelect? Assay System combines fluorescence quantification technology and an improved soft agar formulation, comprehensively optimizing the experimental workflow:



The CytoSelect? Cell Transformation Assay Kit quantifies cell colonies via a high-sensitivity fluorescence detection method. It shortens the experimental cycle from 3–4 weeks to within 1 week, significantly improving research efficiency while avoiding subjective errors caused by manual counting. This kit is particularly suitable for high-throughput sample detection. For application fields such as protein/DNA microarray analysis or cancer vaccine development, the use of a dedicated, improved soft agar medium enables easy recovery of activated transformed cells for further culture and testing.


Fig. 1 Cell Viability AssayHeLa and 293 cells were recovered and cultured for 6 days in accordance with the experimental protocol, and cell viability was determined using the trypan blue exclusion method.

 



Product Ordering Information

Item Number

Product Name

Test Method

CBA-135

CytoSelect? 96-Well Cell Transformation Assay, Cell Recovery Compatible

Colorimetric method

CBA-140

CytoSelect? 96-Well Cell Transformation Assay, Cell Recovery Compatible

Fluorescence method

CBA-130

CytoSelect? 96-Well Cell Transformation Assay, Soft Agar Colony Formation

Fluorescence method

 

Published Literature on Product-Related Applications

1. El Baba, R. et al. (2023). Polyploidy, EZH2 upregulation, and transformation in cytomegalovirusinfected human ovarian epithelial cells. Oncogene. doi: 10.1038/s41388-023-02813-4.

2. Hiroki, H. et al. (2023). Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. SciRep. 13(1):7588. doi: 10.1038/s41598-023-33852-2.

3. El Baba, R. et al. (2023). EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection ofhuman astrocytes. Oncogene. doi: 10.1038/s41388-023-02709-3.

4. Kantisin, S. et al. (2022). In utero arsenic exposure increases DNA damage and gene expressionchanges in umbilical cord mesenchymal stem cells (UC-MSCs) from newborns as well as in UCMSC differentiated hepatocytes. Toxicol Rep. doi: 10.1016/j.toxrep.2022.09.002.

5. Nehme, Z. et al. (2022). Polyploid giant cancer cells, EZH2 and Myc upregulation in mammaryepithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 80:104056. doi:10.1016/j.ebiom.2022.104056.

6. Kim, D.G. et al. (2022). AIMP2-DX2 provides therapeutic interface to control KRAS-driventumorigenesis. Nat Commun. 13(1):2572. doi: 10.1038/s41467-022-30149-2.

7. Buranarom, A. et al. (2021). Dichloromethane increases mutagenic DNA damage andtransformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinomacell lines. Chem Biol Interact. doi: 10.1016/j.cbi.2021.109580.

8. Nehme, Z. et al. (2021). Polyploid giant cancer cells, stemness and epithelial-mesenchymalplasticity elicited by human cytomegalovirus. Oncogene. doi: 10.1038/s41388-021-01715-7.

9. Andrade, F. et al. (2021). Polymeric micelles targeted against CD44v6 receptor increaseniclosamide efficacy against colorectal cancer stem cells and reduce circulating tumor cells in vivo.J Control Release. 331:198-212. doi: 10.1016/j.jconrel.2021.01.022.

10. Wakae, K. et al. (2020). EBV-LMP1 induces APOBEC3s and mitochondrial DNA hypermutationin nasopharyngeal cancer. Cancer Med. doi: 10.1002/cam4.3357.

11. Lv, W. et al. (2020). Reprogramming of Ovarian Granulosa Cells by YAP1 Leads to Developmentof High-Grade Cancer with Mesenchymal Lineage and Serous Features. Sci Bull. doi:10.1016/j.scib.2020.03.040.

12. Murata, M. et al. (2020). OVOL2-Mediated ZEB1 Downregulation May Prevent Promotion ofActinic Keratosis to Cutaneous Squamous Cell Carcinoma. J Clin Med. 9(3). pii: E618. doi:10.3390/jcm9030618.

13. Hernandez, D.M. et al. (2020). IPF pathogenesis is dependent upon TGFβ induction of IGF-1.FASEB J. doi: 10.1096/fj.201901719RR.

14. Sand, A. et al. (2019). WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targetingcancer stem-like properties in HER2-positive breast cancer. Cancer Lett. 472:119-131. doi:10.1016/j.canlet.2019.12.023.

15. Paul, M. et al. (2022). Nitric-Oxide Synthase trafficking inducer (NOSTRIN) is an emerging negative regulator of colon cancer progression. BMC Cancer. 22(1):594. doi: 10.1186/s12885-022-09670-6.

16. Kondo, M. et al. (2021). Safety and efficacy of human juvenile chondrocyte-derived cell sheets forosteochondral defect treatment. NPJ Regen Med. 6(1):65. doi: 10.1038/s41536-021-00173-9.

17. van der Toorn, M. et al. (2018). The biological effects of long-term exposure of human bronchialepithelial cells to total particulate matter from a candidate modified-risk tobacco product. Toxicol In Vitro. 50:95-108. doi: 10.1016/j.tiv.2018.02.019.

18. Montalbano, M. et al. (2016). Modeling of hepatocytes proliferation isolated from proximal and distal zones from human hepatocellular carcinoma lesion. PLoS One. 11:e0153613.

19. Choi, B.Y. et al. (2023). Engineered Mesenchymal Stem Cells Over-Expressing BDNF Protect theBrain from Traumatic Brain Injury-Induced Neuronal Death, Neurological Deficits, and CognitiveImpairments. Pharmaceuticals (Basel). 16(3):436. doi: 10.3390/ph16030436.

20. Ikeda, J. et al. (2023). Hypoxia inducible factor‐1 activator munc‐18‐interacting protein 3 promotestumour progression in urothelial carcinoma. Clin Transl Disc. 3:e158. doi: 10.1002/ctd2.158.

21. Switzer, C.H. et al. (2022). NOS2 and S-nitrosothiol signaling induces DNA hypomethylation andLINE-1 retrotransposon expression. Proc Natl Acad Sci U S A. 119(21):e2200022119. doi:10.1073/pnas.2200022119.

22. Furuya, K. et al. (2022). Machine learning extracts oncogenic-specific γ-H2AX foci formationpattern upon genotoxic stress. Genes Cells. doi: 10.1111/gtc.13005.

23. Kim, M. et al. (2022). BRAFV600E Mutation Enhances Estrogen-Induced Metastatic Potential ofThyroid Cancer by Regulating the Expression of Estrogen Receptors. Endocrinol Metab (Seoul).37(6):879-890. doi: 10.3803/EnM.2022.1563.

24. Toh, P.J.Y. et al. (2022). Optogenetic control of YAP cellular localisation and function. EMBORep. doi: 10.15252/embr.202154401.

25. Lee, A.R. et al. (2022). Biomarker LEPRE1 induces pelitinib-specific drug responsiveness byregulating ABCG2 expression and tumor transition states in human leukemia and lung cancer. SciRep. 12(1):2928. doi: 10.1038/s41598-022-06621-w.

26. Wang, Y. et al. (2022). Long non-coding RNA OIP5-AS1 suppresses microRNA-92a to augmentproliferation and metastasis of ovarian cancer cells through upregulating ITGA6. J Ovarian Res.15(1):25. doi: 10.1186/s13048-021-00937-3.

27. Andriolo, G. et al. (2021). GMP-Grade Methods for Cardiac Progenitor Cells: Cell BankProduction and Quality Control. Methods Mol Biol. doi: 10.1007/7651_2020_286.

28. Tan, T.T. et al. (2021). Assessment of Tumorigenic Potential in Mesenchymal-Stem/Stromal-CellDerived Small Extracellular Vesicles (MSC-sEV). Pharmaceuticals. 14(4):345. doi:10.3390/ph14040345.

29. Lo, E.K.K. et al. (2021). Low dose of zearalenone elevated colon cancer cell growth through Gprotein-coupled estrogenic receptor. Sci Rep. 11(1):7403. doi: 10.1038/s41598-021-86788-w.

30. Park, S. et al. (2021). Cerebral Cavernous Malformation 1 Determines YAP/TAZ SignalingDependent Metastatic Hallmarks of Prostate Cancer Cells. Cancers (Basel). 13(5):1125. doi:10.3390/cancers13051125.


References

1. El Baba, R. et al. (2023). Polyploidy, EZH2 upregulation, and transformation in cytomegalovirus infected human ovarian epithelial cells. Oncogene. doi: 10.1038/s41388-023-02813-4.

2. Hiroki, H. et al. (2023). Targeting Poly(ADP)ribose polymerase in BCR/ABL1-positive cells. Sci Rep. 13(1):7588. doi: 10.1038/s41598-023-33852-2.

3. El Baba, R. et al. (2023). EZH2-Myc driven glioblastoma elicited by cytomegalovirus infection of human astrocytes. Oncogene. doi: 10.1038/s41388-023-02709-3.

4. Kantisin, S. et al. (2022). In utero arsenic exposure increases DNA damage and gene expression changes in umbilical cord mesenchymal stem cells (UC-MSCs) from newborns as well as in UC-MSC differentiated hepatocytes. Toxicol Rep. doi: 10.1016/j.toxrep.2022.09.002.

5. Nehme, Z. et al. (2022). Polyploid giant cancer cells, EZH2 and Myc upregulation in mammary epithelial cells infected with high-risk human cytomegalovirus. EBioMedicine. 80:104056. doi: 10.1016/j.ebiom.2022.104056.

Cell Biolabs

Headquartered in San Diego, California, USA, Cell Biolabs has been committed to developing technologies and tools for the life sciences research field and commercializing the innovative technological achievements it has developed. The company diligently refines its products with the aim of advancing the research on cell functions and disease mechanisms to new heights.

 

Cell Biolabs’ products feature unique characteristics and stand at the cutting-edge of the industry. They are widely used in research laboratories across numerous universities, government research institutions, as well as biotechnology and pharmaceutical companies around the world.

 

Beijing XMJ is the authorized distributor of the Cell Biolabs brand in China, providing users with comprehensive technical support and after-sales service. If you are interested in the products, please feel free to call XMJ's customer service hotline at 400-050-4006 or visit the website www.gp82.cn for more information.

 

日韩在线观看视频黄| 精品国产一区二区三区精东影业| 国产韩国精品一区二区三区| 99久久精品费精品国产一区二区| 欧美国产日韩在线| 四虎论坛| 久久精品店| 99热精品一区| 九九久久国产精品大片| 精品在线观看一区| 国产a毛片| 亚欧乱色一区二区三区| 精品国产香蕉伊思人在线又爽又黄| 一级毛片视频播放| 久久精品大片| 国产麻豆精品hdvideoss| 国产不卡在线观看| 国产亚洲免费观看| 午夜在线影院| 天天做日日爱夜夜爽| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 九九干| 国产不卡高清| 精品国产亚洲一区二区三区| 香蕉视频久久| 日本伦理黄色大片在线观看网站| 一级女性大黄生活片免费| 国产一区精品| 久久国产影院| 午夜激情视频在线播放| 国产麻豆精品hdvideoss| 你懂的国产精品| 国产不卡福利| 国产精品1024永久免费视频| 欧美爱色| 精品国产香蕉在线播出| 成人高清视频免费观看| 久久久久久久免费视频| 国产a视频| 久久精品免视看国产明星| 久久久久久久久综合影视网| 99久久视频| 毛片成人永久免费视频| 香蕉视频亚洲一级| 国产激情一区二区三区| 久久精品成人一区二区三区| 91麻豆精品国产片在线观看 | 日韩专区一区| 九九免费精品视频| 欧美1区2区3区| 日本特黄特色aaa大片免费| 999久久久免费精品国产牛牛| 国产伦久视频免费观看 视频| 青青久久国产成人免费网站| 国产成人精品影视| 国产一级强片在线观看| 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 国产麻豆精品| 亚洲精品中文一区不卡| 国产麻豆精品| 一级女性大黄生活片免费| 欧美激情一区二区三区在线播放 | 日韩专区一区| 欧美日本免费| 国产精品自拍在线| 日韩专区亚洲综合久久| 一级女性大黄生活片免费| 免费毛片基地| 一本高清在线| 韩国毛片| 亚洲天堂免费观看| 日韩综合| 美女免费精品视频在线观看| 欧美激情影院| 日韩免费在线视频| 97视频免费在线观看| 成人免费观看视频| 亚洲 男人 天堂| 91麻豆精品国产片在线观看| 欧美一级视频高清片| 欧美激情中文字幕一区二区| 在线观看成人网| 精品毛片视频| 成人影院一区二区三区| 午夜欧美成人香蕉剧场| 精品国产一区二区三区久| 国产成人啪精品| 日日爽天天| 免费国产在线观看不卡| 欧美另类videosbestsex久久| 免费的黄色小视频| 国产福利免费观看| 青青久热| 亚洲www美色| 九九免费高清在线观看视频 | 久久精品成人一区二区三区| 国产成人精品影视| 美女免费毛片| 韩国三级香港三级日本三级la | 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 日韩一级黄色大片| 国产成人欧美一区二区三区的| 日韩中文字幕一区二区不卡| 日韩av东京社区男人的天堂| 日本免费区| 国产一区二区精品| 国产网站在线| 久草免费资源| 欧美大片a一级毛片视频| 亚洲精品影院| 久久久久久久久综合影视网| 国产网站免费视频| 国产不卡在线看| 韩国三级视频网站| 国产91精品一区二区| 免费一级片在线观看| 韩国毛片| 青草国产在线观看| 亚洲精品影院| 日韩中文字幕在线播放| 你懂的日韩| 韩国毛片免费大片| 精品在线观看一区| 日韩一级黄色| 国产a毛片| 韩国毛片| 精品久久久久久影院免费| 国产精品自拍亚洲| 国产成a人片在线观看视频| 成人在免费观看视频国产| 成人av在线播放| 免费国产在线视频| 韩国毛片免费| 午夜在线亚洲男人午在线| 韩国毛片免费| 国产视频一区在线| 青青青草视频在线观看| 青青久久国产成人免费网站| 午夜久久网| 毛片高清| 国产麻豆精品| 国产一区免费在线观看| 亚洲 男人 天堂| 久久国产精品自由自在| 午夜家庭影院| 黄色福利| 久草免费在线色站| 国产麻豆精品视频| 精品在线观看国产| 精品毛片视频| 久久精品欧美一区二区| 久久久久久久久综合影视网| 久久久久久久久综合影视网| 久久精品免视看国产明星| 一级毛片看真人在线视频| 国产成人精品综合在线| 日本久久久久久久 97久久精品一区二区三区 狠狠色噜噜狠狠狠狠97 日日干综合 五月天婷婷在线观看高清 九色福利视频 | 国产成人精品影视| 国产精品自拍在线| 日韩中文字幕在线播放| 日韩在线观看视频免费| a级毛片免费观看网站| 国产亚洲免费观看| 欧美1区2区3区| 九九久久国产精品大片| 免费一级片在线观看| a级毛片免费全部播放| 亚洲第一色在线| 欧美夜夜骑 青草视频在线观看完整版 久久精品99无色码中文字幕 欧美日韩一区二区在线观看视频 欧美中文字幕在线视频 www.99精品 香蕉视频久久 | 亚洲精品影院| 青青久久网| 一级片片| 日韩在线观看视频免费| 国产伦精品一区三区视频| 亚欧乱色一区二区三区| 国产美女在线观看| 99久久精品国产国产毛片| 日韩av成人| 国产一区二区福利久久| 国产麻豆精品hdvideoss| 成人高清视频在线观看| 天堂网中文字幕| 999精品影视在线观看| 精品国产三级a∨在线观看| | 九九久久国产精品大片| 成人在免费观看视频国产| 午夜欧美成人香蕉剧场| 成人免费网站视频ww| 日韩在线观看视频免费| 九九九网站| 沈樵在线观看福利| 欧美激情一区二区三区视频 | 好男人天堂网 久久精品国产这里是免费 国产精品成人一区二区 男人天堂网2021 男人的天堂在线观看 丁香六月综合激情 | 天天做日日爱| 日韩在线观看视频网站| 99热精品一区| 精品视频一区二区三区| 久久国产一区二区| 国产麻豆精品|